On the Number of Blocks in a Generalized Steiner System

نویسنده

  • Jacobus H. van Lint
چکیده

We consider t-designs with *=1 (generalized Steiner systems) for which the block size is not necessarily constant. An inequality for the number of blocks is derived. For t=2, this inequality is the well known De Bruijn Erdo s inequality. For t>2 it has the same order of magnitude as the Wilson Petrenjuk inequality for Steiner systems with constant block size. The point of this note is that the inequality is very easy to derive and does not seem to be known. A stronger inequality was derived in 1969 by Woodall (J. London Math. Soc. (2) 1, 509 519), but it requires Lagrange multipliers in the proof. 1997 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the possible volume of $mu$-$(v,k,t)$ trades

‎A $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $T_1$‎, ‎$T_2‎, ‎dots T_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $V$ the number of‎ ‎blocks containing this t-subset is the same in each $T_i (1leq‎ ‎i leq mu)$‎. ‎In other words any pair of collections ${T_i,T_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. In th...

متن کامل

Complete forcing numbers of polyphenyl systems

The idea of “forcing” has long been used in many research fields, such as colorings, orientations, geodetics and dominating sets in graph theory, as well as Latin squares, block designs and Steiner systems in combinatorics (see [1] and the references therein). Recently, the forcing on perfect matchings has been attracting more researchers attention. A forcing set of M is a subset of M contained...

متن کامل

Control of a Hyperchaotic System Via Generalized Backstepping Method

 This paper investigates on control and stabilization of a new hyperchaotic system. The hyperchaotic system is stabilized using a new technique which called Generalized Backstepping Method (GBM). Because of its similarity to Backstepping approach, this method is called GBM. But, this method is more applicable in comparison with conventional Backstepping.  Backstepping method is used only for sy...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Studies with a Generalized Neuron Based PSS on a Multi-Machine Power System

An artificial neural network can be used as an intelligent controller to control non-linear, dynamic system through learning. It can easily accommodate non-linearities and time dependencies. Most common multi-layer feed-forward neural networks have the drawbacks of large number of neurons and hidden layers required to deal with complex problems and require large training time. To overcome these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 80  شماره 

صفحات  -

تاریخ انتشار 1997